

Mechanisms and Temperature Dependence of Single Event Latchup Observed in a CMOS Readout Integrated Circuit from 16-300 K

Cheryl J. Marshall¹, Paul W. Marshall², Raymond L. Ladbury¹, Augustyn Waczynski¹, Rajan Arora³, Roger D. Foltz¹, John D. Cressler³, Duncan M. Kahle¹, Dakai Chen⁴, Gregory S. Delo⁶, Nathaniel A. Dodds⁵, Jonathan A. Pellish¹, Emily Kan¹, Nicholas Boehm⁶, Robert A. Reed⁵, and Kenneth A. LaBel¹

¹NASA GSFC, ²NASA GSFC Consultant ³Georgia Institute of Technology ⁴MEI Technologies, Inc. ⁵Vanderbilt University ⁶Global Science and Technology, NASA-GSFC

Funding from NASA NEPP, IRAD, & flight projects.

For inquiries: cheryl.j.marshall@nasa.gov

Presented by Cheryl Marshall, 2010 NSREC, Denver, CO, July 20, 2010

Outline

- Review of classical electrical and particle-induced LU in CMOS
- 1st observation of 'anomalous' electrical latchup (LU) from ~4 50 K
 by Deferm et al.
- Temperature dependent electrical LU results 130 nm test structure
- Heavy ion SEL experiment on 0.5 µm ReadOut Integrated Circuit (ROIC)
- Discussion of particle-induced SEL mechanisms at 20 K

Review of Inherent CMOS LU Susceptibility

Cross coupled parasitic bipolar transistors inherent to CMOS Technology

- Current produced by ion strike can forward bias the base emitter junction and begin the SEL sequence
- Key device parameters for all temperatures:
 - Well & substrate resistivities
 - Well & substrate contact proximity
 - Minimum n+ p+, or cathode-anode spacing

Classical Picture of LU as the Temperature Drops

- Electrical and particle-induced LU susceptibilities decrease because:
 - Well & substrate resistances decrease due to increase in mobility and carrier freeze-out.
 - V_{BE} required to support a given collect current increases.
 - Parasitic bipolar gain product is decreasing exponentially with temperature (and also via temperature dependence of the bandgap narrowing in the emitter).
 - Often has little quantitative effect on LU characteristics.
- Below ~75-100 K, regenerative feedback is no longer possible, since $\beta_{npn}\beta_{pnp}$ < 1 for the two parasitic BJT common-emitter current gains.

Electrical LU is observed below ~ 50 K

- Deferm et al. suggest shallowlevel impact ionization as the source of an exponential increase in free carriers once a threshold field is reached in the internal n- and p- regions of the parasitic pnpn structure, resulting in significant current flow.
 - LU condition becomes:

$$\beta_{npn}\beta_{pnp} > (M_nM_p)^{-1}$$

where M_n & M_p are the shallow level impact ionization coefficients (or rates) for electrons & holes

After Deferm et al., Cryogenics 30, 1990.

Temperature Dependence of Key LU Parameters

Electrical LU measurements via anode injection

130 nm IBM pnpn test structure

- Note changes ~50 K where shallow level impact ionization becomes important.
- Triggering current and voltages required to initiate LU
 - Increase monotonically with decreasing temperature
- Vertical pnp gain much larger than for lateral npn

Dominant Impurity Ionization Mechanisms vs Temperature

After Simoen et al., "Charge transport in a Si resistor at liquid –He temperatures," JAP 68 (8), 1990.

Dominant Impurity Ionization Mechanisms vs Temperature

- Shallow-level impact ionization (SLII) is field assisted ionization of frozenout shallow dopants.
- SLII can lead to significant charge multiplication when modest electric field threshold is reached and excess carriers are present

After Simoen et al., "Charge transport in a Si resistor at liquid –He temperatures," JAP 68 (8), 1990.

Heavy Ion SEL Test Description of 0.5 µm ROIC

- AMI C5 bulk process on lightly doped p-substrate
- ROIC fully functional during testing (4 channels at 500 kHz).
- Four key voltages & associated currents monitored every 25 µs
 - Real time visibility on all supplies
 - V_{pd} (logic portion of readout circuitry) was only supply to latch
- ROIC health monitored throughout the test.

He cryostat in front of TAMU beam line. Five ROICs tested.

Temperature Dependence of Hard SEL Events

Kr ions @ 60°:

LET_{eff} = 64 MeVcm²/mg
and R_{proj}= 43
$$\mu$$
m

- Cross sections comparable for 20 K & 300 K
- Very modest temperature dependence 200-300 K
- Holding voltages (V_H):
 - $4.1 5.6 \text{ V } (T \le 24 \text{ K})$
 - $1.9 2.8 \text{ V} \text{ (T} \ge 135 \text{ K)}$
- Self quenching high current events observed in both transition regions

Typical Hard SEL and Self-Quenching High Current Event Signatures

- Holding voltage = 2.8 V
- Note self quenching event had same current level as hard SEL event (~20 mA)

ROIC Latchup Behavior at 20 K

LET_{th}~3.3 at 20 K, but 15 < LET_{th} < 20 at 300 K 'Saturated' cross section 2-3 X higher at 300 K

- Diffusion from substrate is important
- No SEL observed for LET_{eff} = 40 & $R_p \sim 4-5 \mu m!$
 - Ar-40 ion deposited28 MeV
 - Only self-recovered high current events
- Ar-40 ion delivered 80
 MeV within 10 µm
 - Penetrated the junction region
 - Both self-recovered and hard SEL events

Shallow-Level Impact Ionization (SLII) Mechanism

- NASA
- Free carriers produced by ion strike initiates exponential growth in free carriers in internal p- and n-region of parasitic pnpn structure that meet the modest electric field threshold for SLII (E_{th})
- The high V_H we observed are expected for 1st order shallow level impact ionization LU model, and are comparable to those observed by Deferm et al.
 - $V_H = 2 V_{bi} + (E_{th}) / A-C spacing$
 - $V_H \sim 4 5 \text{ V for Deferm } et \text{ al.}$ at $4 \sim 50 \text{ K}$
- Our data clearly indicate importance of lightly doped p-substrate
 - SEL cross section reduction striking for $R_p < 30 \mu m$ at 20 K
 - Slight temperature dependence from 200-300 K
 - Changes in R & V_{BE} with temperature decrease SEL probability
 - Charge collection efficiency may be greater at lower temperatures
 - Longer diffusion length and lower recombination efficiency

Conclusions

- Cryogenic SEL is indeed possible and represents a new qualification concern.
 - Shallow-level impact ionization is a very plausible mechanism to provide a source of carriers below roughly 50 K.
 - NASA requires cryogenic operation for ROICs, ASICs and other CMOS devices for IR sensor applications as well as extreme environments.
- Very little data exists for ion-induced SEL below room temperature
 - We see a significantly lower SEL threshold at 20 K compared to room temperature.
 - 'Saturated' cross section is ~2 3 higher at 300 K.
 - Data in the 'classical' regime from 100 300 K show SEL behavior beginning at 135 K.
 - Very modest temperature dependence of the SEL cross section from ~200 – 300 K.
 - Similar results for 2nd ROIC on epi from different vendor.
 - · 'Test as you fly'